Here are some simple R commands for doing probability computations. We'll proceed by distribution.
\#First we'll look at the BI distribution. Suppose X ~ BI (10, .7). To find P(X = 5) = . 1029 just do ... dbinom(5, 10, .7);
Suppose $X \sim B I(10, .7)$. To find $P(X<6)=.1503$ just do \ldots
pbinom(5, 10, .7);
Suppose $\mathrm{X} \sim \mathrm{BI}(10, .7)$. To find $\mathrm{P}(\mathrm{X}>5)=.8497$ just do ...
1 - pbinom(5, 10, .7);
\#Next we'll look at the Normal distribution. Since this and others are continuous, we need not worry about the ddistn commands. Suppose $X \sim N(13,2)$. To find $P(X<3)=.000000287$ just do \ldots
pnorm(3, 13, 2);
\#Suppose $\mathrm{X} \sim \mathrm{N}(13,2)$. To find $\mathrm{P}(\mathrm{X}>10)=.9332$ just do \ldots
1 - pnorm(10, 13, 2);
\#Suppose $\mathrm{X} \sim \mathrm{N}(13,2)$. To find the $95^{\text {th }} \%$ ile, $\mathrm{X}_{.95}=16.29$ just do \ldots
qnorm(.95, 13, 2);
\#Next we'll look at the Chi Square distribution. Since this and others are continuous, we need not worry about the ddistn commands. Suppose W ~ Chisq (3). To find $\mathrm{P}(\mathrm{W}<3)=.6084$ just do \ldots pchisq(3, 3);
Suppose W ~ Chisq (3). To find $\mathrm{P}(\mathrm{W}>3)=.3916$ just do \ldots
1 - pchisq(3, 3);
\#Suppose $\mathrm{W} \sim$ Chisq (3). To find the $95^{\text {th }} \%$ ile, $\mathrm{W}_{.95}=7.815$ just do \ldots
qchisq(.95, 3);
\#Next we'll look at the t distribution. Since this and others are continuous, we need not worry about the ddistn commands. Suppose $\mathrm{t} \sim \mathrm{t}(13)$. To find $\mathrm{P}(\mathrm{t}<2)=.9666$ just do \ldots
pt(2, 13);
\#Suppose $\mathrm{t} \sim \mathrm{t}(13)$. To find $\mathrm{P}(\mathrm{X}>2)=.0334$ just do \ldots
$1-\mathrm{pt}(2,13)$;
\#Suppose $\mathrm{t} \sim \mathrm{t}(13)$. To find the $95^{\text {th }} \%$ ile, $\mathrm{t}_{.95}=1.77$ just do \ldots
qt(.95, 13);
\#Next we'll look at the F distribution. Since this and others are continuous, we need not worry about the ddistn commands. Suppose F $\sim \mathrm{F}(2,13)$. To find $\mathrm{P}(\mathrm{F}<2)=.8251$ just do \ldots
pf(2, 2, 13);
Suppose $F \sim F(2,13)$. To find $P(F>2)=.1749$ just do \ldots
$1-\mathrm{pf}(2,13)$;
\#Suppose $\mathrm{F} \sim \mathrm{F}(2,13)$. To find the $95^{\text {th }} \%$ ile, $\mathrm{F}_{.95}=23.383$ just do \ldots
qnorm(.95, 2, 13);

